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Abstract—Analyzing gene expression data, the pro-
duction of proteins encoded by a DNA sequence, is ex-
tremely valuable for understanding disease and the effects
of various treatments. However, analysis can be challenging
because gene expression datasets are high-dimensional,
noisy, and sometimes not normally distributed. This paper
demonstrates two main methods to better analyze gene
expression data: a method of improved hypothesis testing
and a method of correlational analysis. We show that
our improved hypothesis testing is able to perform a
more meaningful measure of statistical significance on non-
normally distributed data. We also demonstrate the power
of analyzing correlative relationships between genes and
identify significantly differentially expressed genes between
a disease and control state.

I. INTRODUCTION

In order to analyze the cellular effects of various
drugs or disease-causing mutations, broadly referred to
as perturbations, biological researchers often want to
examine how much certain genes are being translated
into proteins within a cell. This kind of measurement is
called gene expression. Each gene consists of a segment
of DNA, which is transcribed into mRNA and then trans-
lated into specific proteins. Therefore, gene expression
can be measured by analyzing the amount of mRNA
produced by transcription of each gene. Researchers use
the gene expression data to identify which genes have
modified expression patterns in response to perturbations
so that they can focus further research efforts on signif-
icantly impacted genes.

Gene expression data can provide valuable insights
into what is happening inside cells: while DNA is static,
measurements of mRNA transcript are dynamic, and thus
can provide information about the current state of a cell.
This information can be useful for understanding disease
and for predictive medicine, among other applications.

While gene expression is a useful measure, anal-
ysis can be challenging for a few reasons. For one, it
suffers from the curse of dimensionality. Humans have
around 20,000 genes, which yields an incredibly high-
dimensional dataset. Another difficulty when working

with genetic data is that the data is noisy. It can be
hard to measure the gene expression levels precisely, and
measurements can also contain human error [1].

Due to these challenges, accurate ways of mea-
suring gene expression are extremely valuable. Current
methods are often technically limited or make significant
assumptions about the underlying data distribution [8].
In this paper, we identify new methods for performing
differential gene extraction, or the identification of genes
whose expression levels differ significantly between two
or more states. We introduce a zeroth order method for
improved hypothesis testing on raw expression data and
a first order method using correlational analysis.

Our zeroth order method is a refinement of standard
hypothesis testing. Like the standard t-test, our method
allows us to determine whether the expression level of
a given gene is significantly different than expected.
However, a significant limitation of standard hypothesis
testing is the assumption of normality, and gene expres-
sion data is often not normally distributed, as can be
seen in Figure 1. In order to allow for a wider variety
of data distributions, we improved modeling of the
underlying data and implemented an improved measure
of significance. Rather than assuming the underlying
distribution is normal, we fit a mixture model so as to
account for truncated, censored, and multi-modal data.
As well, we implement a probabilistic p-value which
is more representative of significance for non-normal
distributions than is the standard p-value.

The first order method analyzes the relationships
between genes. We use the pairwise correlations be-
tween genes to determine the most significant differences
between two different disease states. By analyzing the
relationships between genes in different disease states,
we can find structure and information about regulatory
relationships that may not be discovered by zeroth
order analysis methods [3]. We use data provided by
our collaborators at MGH to perform this analysis. By
analyzing the differential gene expression between cells
from healthy control subjects and cells from patients
with Schizophrenia, we are able to identify genes whose
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correlative relationships to other genes are significantly
altered in the Schizophrenia cells.

We offer three main contributions:
• Since gene expression data is not always normally

distributed, we demonstrate a method to model
non-normal distributions, including mixtures with
truncated or censored components.

• We use a probabilistic p-value to better perform
hypothesis testing for non-normal distributions.

• We use correlative analysis to identify genes with
significantly different patterns of co-expression in
patients with Schizophrenia as opposed to healthy
control subjects.

Fig. 1. This bimodal gene expression data is from an MGH Dataset
consisting of two patients with Schizophrenia and two healthy control
subjects.

II. RELATED WORK

Many of the current methods used for differential
gene extraction rely on univariate methods, which are
tests that compare the expression level of an individual
gene [10]. Univariate tests include Welch’s t-test, Signif-
icance Analysis of Microarrays (SAM) [18], and limma
(Linear Models for Microarray Data) [3], [8], [14], [18],
[19]. Of these univariate methods, Welch’s t-test, and
SAM assume that the distribution of expression levels
for each gene is normal [18], [19]. In addition to these
parametric tests, which make assumptions about the
underlying distribution, are nonparametric tests, which
make no assumptions about the underlying distribution.
However, the statistical power of non-parametric tests is
much weaker.

The limitations of these methods indicate a need for
a richer analysis of gene expression datasets. One such
example is [3], which allows for multivariate analysis.
Another is Gene Set Enrichment Analysis, which focuses

on sets of biologically related genes rather than just
individual genes [17].

We suggest an improvement upon the current trade-
off between the power of parametric tests and the
flexibility of non-parametric tests with our zeroth order
method. Rather than assuming normality, we allow for
mixture models that can represent an underlying distri-
bution that is non-normal. We build upon the EM Al-
gorithm, which can be used to create Gaussian Mixture
Models, but with the assumption that each underlying
mixture component is normal [4]. We use [6] and the
MixEM package [13] to implement a formulation of
the EM algorithm that can incorporate truncated and
censored data.

This mixture model itself is not sufficient to fit
an unknown distribution, since the number and type
of each distribution must be specified before the EM
Algorithm optimizes the parameters of each distribution.
Therefore, we implemented an automatic distribution
selection algorithm based on that of [2]. Our algorithm
randomly generates candidate sets of distributions (for
example, two truncated distributions) and evaluates the
Bayesian Information Criterion (BIC) for each model.
The BIC offers a tradeoff between maximizing the log-
likelihood but penalizing the number of parameters in
the distribution, which helps avoid overfitting.

As well, we perform a richer multivariate analysis
through our first order method. Rather than comparing
the expression level of a single gene to an expected
distribution as in the univariate methods, we use the
correlative relationships between pairs of genes to model
significant differences between disease states. Papers
such as [5] and [15] demonstrate the power of analyzing
gene expression correlations and networks rather than on
an individual basis. This literature indicates that our first
order correlation analysis is similar to other powerful
analysis techniques.

III. DATA

There were two main sources of data used in this
work. We used synthetic data for our zeroth order method
of improved hypothesis testing, and we used data from
Massachusetts General Hospital (MGH) for our first
order correlation analysis.

For our zeroth order method, we generated synthetic
data. This allowed us to know precisely what the under-
lying distribution was when testing our models. In order
to test our methods, we wanted to be able to construct
a variety of shapes of the data and compare our results
to what we would expect.

For our first order method, we used a dataset from
MGH consisting of gene expression data from four
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patients: two with Schizophrenia (SCZ) and two Healthy
Control Subjects (HCS). For each subject, Neural Pro-
genitor Cells (NPC) were derived from a sample of
skin cells. Plates were prepared in which each subject’s
NPCs were exposed to each of 60 compounds. These
compounds include DMSO, which we use as a “control”
perturbation, and other psychoactive substances such as
clozapine and duloxetine. Then, the L1000 technique
[16] was used to measure the amount of mRNA produced
by the transcription of each gene. This procedure gen-
erated 758 HCS and 756 SCZ measurements 978 genes,
where each measurement includes a perturbagen and a
dosage amount.

IV. METHODS

Previous work has both demonstrated a need for
improvements upon the standard t-test and validated
the power of correlational analyses. Here, we describe
two methods, a zeroth order method that demonstrates
improved hypothesis testing, and a first order method
that performs correlational analysis.

A. Zeroth Order

The zeroth order method addresses the problem
of non-normal distributions. Since standard hypothesis
testing assumes an underlying normal distribution, it may
not always be the most appropriate test to use on other
distributions. Thus, we implement two main additions
to standard hypothesis testing in order to obtain more
accurate results on non-normal distributions: improved
modeling of the underlying distribution and a probabilis-
tic variant of the p-value calculation.

Improved Null Distribution Modeling: In order to
better represent our data, we improve the model of
the underlying distribution by allowing for truncated,
censored, and bi-modal distributions.

Truncated and censored distributions can occur in
biological data due to the effects of limited measur-
ing instruments. Truncated distributions are like normal
distributions, except with values above and/or below
certain thresholds removed. Censored distributions are
similar, but rather than removing the data, the mass of
the censored data is placed at the extremal values of the
remaining distribution. Example plots of truncated and
censored distributions are illustrated in figure 2.

As well, gene expression data can sometimes be
multi-modal due to patient differences in the underlying
population. In order to model multi-modal distributions,
we used the Expectation-Maximization (EM) Algorithm
[4]. The EM Algorithm is commonly used for Gaus-
sian Mixture Models, which are mixtures of normal

distributions. We used an existing implementation of
the EM Algorithm and modified it so that it could not
only create mixtures of normal distributions, but also
truncated and censored distributions [13], [6], [12]. In
order to choose from among candidate distributions, we
used a model selection algorithm that uses the Bayesian
Information Criterion (BIC) to find the most likely
distribution without overfitting. Our algorithm was based
on a formulation described by [2] that generates many
possible model formulations and then calculates the BIC,
which balances an maximal log-likelihood of the data
belonging to that model with a regularization term.
In order to prevent overfitting, the regularization term
penalizes the overall number of distribution parameters.

Fig. 2. The left figure shows a censored distribution, in which values
outside of the specified region are assigned to the nearest value within
the region. The right figure shows a truncated distribution, in which
values outside of the specified region are simply removed.

Improved p-value measurement: Once we were able
to model a variety of distributions, we needed to update
our method of significance testing. The normal p-value
can be described as follows:

p = Pn(n > X)

This standard measure of p-value describes the
probability of obtaining a value as extreme or more
extreme than the observed value, by chance. Since the
underlying distribution is assumed to be normal, this
measurement can be done by determining the area under
the normal curve within some number of standard devi-
ations from the mean (assuming a two-tailed test). How-
ever, this standard method of calculating p-value does not
produce appropriate results for bi-modal distributions. As
can be seen in the blue line in figure 3, the assumption of
normality results in misrepresentative p-values. In order
to have a more appropriate measure of significance, we
implemented a probability-based measure:

p = Pn(pn(n) > pn(X))

The result of using this probability-based p-value is
shown by the orange line in figure 3. It is clearly
much more representative of the shape of the underlying
distribution than are the standard p-values. While the
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standard p-value calculation does not capture the de-
creased likelihood of obtaining results in this region, our
method does. One clear region of interest is in between
the two modes of the data. While the standard model
assigns these values a relatively high p-value, our model
correctly detects them as rare and assigns them lower
p-values.

Fig. 3. For a bimodal truncated distribution, the p-value as calculated
by a standard t-test misrepresents the distribution in two key ways. It
does not assign a probability of zero to points outside the region of
truncation. Also, it does not account for the bi-modality of the data:
although query points near 3 are actually close to the mean of the
distribution, they are still unlikely to occur since they are in a valley
between the two modes.

B. First Order

The first order method allows us to look at the
correlative relationships between genes. By comparing
the correlations between different genes in different
disease states, we might be able to gain information not
present in the zeroth order analysis. Using the zeroth
order analysis, we would compare the expression level
of a given gene in a disease state to the distribution
of expression levels in the control state and determine
how significant the expression level is for the disease
state. However, for first order analysis, we compare the
correlative relationships between all genes in both the
control case and in the disease case and can then extract
information about which correlative strengths change the
most.

For this work, we analyzed gene expression data
of cells from Healthy Control Subjects (HCS) and
Schizophrenia patients (SCZ). For each disease state, we
used the pairwise correlation between all genes to create
a correlation matrix. This matrix can be visualized as a
graph, in which nodes are genes and weighted edges
are the strength of correlation between two genes. A
representative sample of genes is shown in Figure 4 for
each state. In order to determine what genes differed
the most between the HCS state and the SCZ state, we

subtracted the two correlation matrices and summed the
edges touching each node. This allows us to determine
which correlative relationships between genes change the
most between the two states.

In order to determine whether the given gene
expression levels were more different than could be
expected by chance, we had to establish a baseline. After
calculating the amount of difference between the two
conditions for each gene, we used a permutation test
to determine statistical significance. We performed this
permutation test by combining all of the HCS and SCZ
data and then randomly splitting the data into two equal-
sized matrices. Then, we perform correlation analysis on
the differential expression of genes between the two ran-
dom matrices. We repeated this random permutation 100
times, and each time recorded the maximum difference
in expression level of any gene between the two matrices.
This was our baseline, since theoretically there shouldn’t
be a significant difference between two such randomly
shuffled matrices.

After establishing this baseline as a null distribution,
we determined the p-value for each of the correlation
sum values found for each gene. We identified four genes
that had significantly different expression pattens in the
SCZ state and the HCS state.

Fig. 4. Different colors represent different correlative strengths
between genes. This visualization allows us to see the types of
possible differences between HCS cells and SCZ cells.

V. RESULTS

Since our zeroth order method was solely tested
on synthetic data, the results we obtained were more
indicative of the correctness of our model rather than of
any interesting outcomes. Based on figure 5, we can see
that our model outperforms the standard procedure for
detecting anomalous gene expression levels. We plot the
regions of a on synthetic truncated bi-modal distribution
where our model detects statistical significance but SciPy
Stats method ttest_ind_from_stats [9] does not.
We demonstrate that, by modeling the data better, we
can perform more accurate and informative hypothesis
testing than by using a standard t-test.
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Fig. 5. Highlighted regions of this graph show areas that our p-value
calculation determines to be statistically unlikely (p < 0.05) but a
standard t-test does not detect as statistically significant.

We were able to obtain results from our first order
method on real data from the experiment done at MGH
using cells from healthy control subjects and patients
with Schizophrenia. We constructed matrices of the
strengths of pairwise correlations between genes and
analyzed which gene-to-gene relationships differed the
most in the two conditions. This data was then used to
determine which single gene expression levels changed
the most.

After establishing a baseline with a permutation
test, we could evaluate the significance of the genes
found through our correlative analysis. Using the re-
sults of our permutation test as our null distribution,
we used a p-value of 0.05 to determine which genes
were significantly differentially expressed between the
two states, SCZ and HCS. We found four genes that
were expressed significantly more in SCZ cells: MPZL1,
ACLY, STXBP1, and FOXJ3. The p-values of these
genes are shown in table I. All of these genes are related
to neurons or neurotransmitters and MPZL1 has even
been found to be related to Schizophrenia [7].

TABLE I
SIGNIFICANTLY DIFFERENTIALLY EXPRESSED GENES BETWEEN

HCS AND SCZ CELLS

Gene Significance
MPZL1 ≤ 0.01
ACLY 0.02

STXBP1 0.02
FOXJ3 0.05

VI. DISCUSSION

A. Interpretation of Results

Zeroth Order Method: An improved method of
hypothesis testing, as demonstrated by our zeroth order
methods, can be extremely valuable for non-normal gene
expression data. The p-value is commonly used to deter-
mine whether a given value is significantly different than
what would be expected based on the null distribution.
A p-value of 0.05 is typical, and means that there is
a 5% chance that this value belongs to the null distri-
bution. While the standard formulation of p-value can
be valuable for many unimodal distributions, there are
important exceptions that show the limited scope of this
metric. For instance, the bi-modal data demonstrated that
a standard p-value does not detect points in between the
two modes as being statistically significant, even though
points in that region are much less likely to belong to
the bi-modal distribution. As well, points outside the
truncated region will never occur and should thus be
assigned a p-value of 0 since a value in that region would
be very anomalous. However, due to the simplicity of
the standard p-value, it is not sensitive to truncation or
censoring. The modifications we made allow for more
accurate and meaningful significance testing.

Genes Found Using First Order Method: Regarding
our first order method, we found that the most differen-
tially expressed genes seemed to be related to neurons or
neural development. [7] shows that MPZL1 is related to
Schizophrenia in a study done on a Han Chinese popula-
tion. ACLY may be related to synthesis of acetylcholine,
a neurotransmitter that operates at the neuromuscular
junction [20]. STXBP1 is related to regulating the release
of neurotransmitters at neural synapses [21]. FOXJ3 was
found to be involved in neural development [11].

B. Limitations

We recognize several limitations in our work that
are worth mentioning. First, our zeroth order methods
were only tested on synthetic data. While our method
clearly detects certain significant regions better than does
a standard t-test, this improvement may be negligible in
real data. Perhaps assuming a normal distribution works
well enough, and does not merit the additional modeling.
Second, we only had data from four patients in perform-
ing our first order analysis. This small patient sample size
results in limited generalizability. Differences detected
by our model could simply be individual differences
rather than anything indicative of a disease state. We
understand that the limited sample size reduces the
significance of our discovered genes. However, we hope
to apply the same methods to larger datasets in order to



6

validate our findings. Third, we are performing relatively
naive correlational analysis methods. Ideally, we would
be able to incorporate biological priors and perform
higher order analysis on the relationships present in
the network. Gene Set Enrichment Analysis [17] could
have interesting connections to correlative work like ours
since it groups genes by biological similarity.

C. Future Work

Although we have validated our hypothesis testing
method on synthetic datasets, our next step is to run our
model on real genetic data. As well, we hope to combine
our zeroth and first order methods so as to perform a
more accurate analysis of our data. We hope that these
results will allow biological researchers to discover genes
of interest more easily and more accurately. In addition,
we hope to run our model on larger datasets, so as to
correct for our second limitation of a small sample size.
Finally, we want to package the software so that it is
easily usable by biological researchers.

Differential gene extraction can often be challeng-
ing due to noisy, high-dimensional datasets. In this
paper, we demonstrate that improved modeling of the
underlying distributions, and correlative analysis may
aid in analysis of gene expression datasets. Our results
show that these methods could be promising in iden-
tifying significantly differentially expressed genes. As
well, these methods could for improved modeling of non-
normal distributions in a variety of fields. Our work has
implications for both aiding our collaborators at MGH
and for broader applications in improving analysis of
gene expression datasets.

VII. CONCLUSION

In this paper, we offer three main contributions:
• We demonstrate a zeroth order method to model

non-normal distributions, including bi-modal mix-
tures with truncated or censored components.

• We use a probabilistic p-value to better perform
hypothesis testing for non-normal distributions.

• We use a first order method of correlative analysis
to identify genes with significantly different patterns
of expression in patients with Schizophrenia as
opposed to healthy control subjects.
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