
Imputation and Supervised Learning on Sparse Datasets

Amir Karamlou, Anna Bair, and Ayush Sharma
Massachusetts Institute of Technology

Cambridge, MA
{annabair, ayushs, karamlou}@mit.edu

Abstract

In this work we implement, evaluate and
compare several methods for dealing with spar-
sity and missing values in data sets. We an-
alyze the performance of each method using
the supervised training methods Support Vector
Machine (SVM) and Logistic Regression (LR)
for the task of binary classification. We utilize
the publicly available NHANES dataset for this
project, and predict smoking behavior among
the respondents via our methods. We discovered
that the MICE with mean imputation method
gives the best performance result (89.47% ac-
curacy) when trained with SVM.

1. Introduction

Real world data is often much more messy,
incomplete, and complex than the standardized
datasets we use in machine learning course-
work. In this project, we explore the problem
of a sparse real world dataset in the context of
performing supervised learning for prediction.
We attempt to predict whether or not a per-
son smokes based on their responses to other
health-related questions. We use several differ-
ent methods of data imputation to handle our
sparse dataset. Then, we evaluate the perfor-
mance of our imputed dataset by using common
prediction models. Ultimately, we are able to
achieve almost 90% accuracy on our prediction
task using imputed data.

1.1. Dataset, Problem, and Objectives

The NHANES dataset [2], is an anonymized
medical dataset that includes interviews with
demographic, socioeconomic, dietary, and
health-related questions. As with all such op-
tional surveys, the resulting dataset contains
many missing values.

Our supervised learning task for this project
was to predict smoking behavior among the sur-
vey respondents given their answers to other nu-
trition and health related questions.

Since our dataset was imperfect, and in-
cluded issues such as missing response values,
we tackled it via experimenting with different
techniques for data imputation as well as col-
laborative filtering.

We chose to use Python for this project, since
it has useful packages such as numpy, sklearn
[4], scipy, and matplotlib. In addition to the
standard packages, we used the package fan-
cyimpute for our KNN and MICE imputation
methods, and we implemented our own Collab-
orative Filtering Algorithm.

2. Data Pre-processing Methods
2.1. Data Formatting

Our dataset comes from a CSV file which
is part of the 2013-2014 NHANES (National
Health and Nutrition Examination Survey)
posted on Kaggle, a popular dataset and data
science website. This survey data is comprised
of six main files: demographic, diet, exam-
ination, labs, medications, and questionnaire.
We chose the questionnaire dataset because it

1

included a wide range of questions covering
lots of different types of information. The
original dataset contains 953 features, includ-
ing information about smoking, medical condi-
tions, mental health screens, and cardiovascular
health, and 10176 rows, each representing a par-
ticipant.

Our pre-processing was tailored to fit our
central goal: predicting whether or not someone
is a smoker. We created a target vector which
reflects participants’ responses to the question
”Do you now smoke cigarettes?” and we nor-
malized the responses. Then, we removed all
other columns associated with smoking behav-
ior from our data matrix. This was to ensure that
our prediction is based on other features than
simply different encodings of the participant’s
smoking behavior.

This main data matrix and target vector were
modified and used in subsequent steps in a vari-
ety of ways to work with our different methods.

2.2. Sparsity

One parameter we varied throughout much
of our experimentation was the density cutoff
for the data. As shown in Figure 1, our dataset
is far from complete.

Figure 1: Proportion of the dataset with
columns at or above given density values.

Our dataset is survey results from a stan-
dard questionnaire and we found that many of
the questions are so specific that most partici-
pants would not have answers for them. For in-
stance, one of the questions is ”How old were
you when bladder cancer was first diagnosed?”

Out of 10176 survey participants, only 11 had a
response to this bladder cancer question. Only
59 of the 953 columns contained a value for
each respondent. Due to the sparsity of our data,
we experimented with a few different methods
of data imputation in order to be able to com-
plete our original prediction task.

One of the most simple methods to deal
with missing data is simply to remove the most
sparse columns. Thus, before applying imputa-
tion or other methods, we would choose a spar-
sity level at which to limit our dataset. We chose
to perform this cutoff because our ultimate goal
is not to impute the entire dataset, but rather to
perform a prediction. Imputation is a step in our
process to perform better prediction. As well,
given that some features of our dataset had re-
markably few features (some only had one re-
sponse), we doubted that those columns would
add much to our prediction.

2.3. Evaluation

Data imputation, or the filling in of miss-
ing data values, became a central part of this
project. Imputation is still an active area of re-
search and thus filling in the missing values was
a non-trivial exercise. We explored different
methods of imputation and collaborative filter-
ing, as well as some combinations and exten-
sions in order to achieve the best results.

We used two broad categories of imputation
methods: naive imputation and advanced impu-
tation. Our naive imputation methods include
zero fill, mean fill, median fill, mode fill, and
KNN, all of which are described in following
sections. Zero fill was trivial to implement by
hand, and we used sklearn Imputer and fancy-
impute’s KNN method for the remaining naive
methods. For KNN, we varied the value of k
from among {1, 5, 17, 21, 31, 33, 37}.

The advanced imputation methods we used
were Multiple Imputation by Chained Equa-
tions (MICE) and Collaborative Filtering. We
used fancyimpute’s MICE method and we im-
plemented our own collaborative filtering. For
the MICE method, we experimented with mean
fill, median fill, and random fill.

For all methods except zero fill, we

2

tested varying density cutoffs from among
{0.5, 0.7, 0.9}.

For data imputation, we evaluated the per-
formance when running basic Support Vector
Machine (SVM) and Logistic Regression (LR)
implementations. For data imputation tasks in
which new imputation methods are being tested,
it is common to artificially remove elements,
perform imputation on the now sparse dataset,
and then evaluate how well the calculated im-
puted values match the actual values. How-
ever, since we have no ground truth data matrix
containing all the values and since we are us-
ing off the shelf methods which have previously
been tested, we determined that testing most of
our imputation methods on artificially created
datasets was outside the scope of this project.

For collaborative filtering, since we imple-
mented the methods from scratch, we chose to
test our prediction compared to ground truth
values. We used our algorithm to predict a given
participant’s smoking patterns based on simi-
lar participants’ smoking patterns. We reduced
our dataset to only include the rows which con-
tained a value for our target column (whether
or not a participant is a smoker). Then, we at-
tempted to predict the values of our target col-
umn. We evaluated our performance based on
the prediction accuracy rate (whether our pre-
dicted value matched the actual value).

2.4. Naive Imputation Methods

2.4.1 Zero Fill

To begin, our naive imputation method was to
fill in missing values with zeros. Although a
simple method, this is a typical baseline ap-
proach used for imputation. As can be seen
from our results in Table 1, we were able to
achieve decently good predictions just with this
simple method.

2.4.2 Mean, Median and Most Frequent
Value Fill

Next, we used sklearn Imputer in order to fill
in our data with either the mean, median, or
most frequent value by column. These results
are summarized in Table 2.

Method Score Best C Best
penalty

SVM (L2) 0.510
SVM (L1) 0.765

GridSearchCV
SVM 0.835 0.01 L1

Default LR 0.694
GridSearchCV

LR 0.827 0.1 L1

Table 1: Prediction results on SVM and LR us-
ing naive zero fill imputation

Method Density SVM LR
Mean 0.5 0.7310 0.7154

0.7 0.7173 0.6686
0.9 0.7014 0.7054

Median 0.5 0.8889 0.6667
0.7 0.8889 0.7193
0.9 0.7234 0.6933

Mode 0.5 0.8889 0.6940
0.7 0.8889 0.7193
0.9 0.7234 0.6894

Table 2: sklearn Imputer prediction perfor-
mance using SVM and LR. The Method column
refers to the reference method used to impute a
given missing value. For instance, ’Mean’ fills
in missing values with the mean of all present
values in its column.

2.4.3 K Nearest Neighbors

K Nearest Neighbors is another common, sim-
ple imputation method. It uses a weighted
sum of the nearest neighbor entries (rows) for
a given piece of missing data and imputes given
these multiple observations. We chose to use
the standard k = 5 as well as a few larger val-
ues until our prediction accuracy seemed to stop
increasing. The test results are shown in Table
3.

In addition, Figure 2 summarizes our re-
sults from the above table. It samples 3 val-
ues for k = {5, 17, 37} and compares them for
both SVM and LR method. It is noteworthy
that SVM peforms consistently better for our

3

k Density SVM LR
5 0.5 0.8713 0.6939

0.7 0.8811 0.6920
0.9 0.7275 0.6793

11 0.5 0.8733 0.6998
0.7 0.8811 0.6959
0.9 0.7255 0.6813

17 0.5 0.8811 0.7076
0.7 0.8772 0.7192
0.9 0.7275 0.6813

31 0.5 0.8830 0.6491
0.7 0.8831 0.7037
0.9 0.7275 0.6934

33 0.5 0.8869 0.6998
0.7 0.8850 0.5828
0.9 0.7275 0.6934

37 0. 0.8850 0.6979
0.7 0.8830 0.6452
0.9 0.7275 0.6974

Table 3: K nearest neighbors imputation and
subsequent performance on prediction task us-
ing SVM and LR

dataset. This could be attributed to the fact that
SVM method is robust against bounded noise,
and our dataset can be expected to behave in that
fashion.

2.5. Advanced Imputation Methods

2.5.1 Multiple Imputation by Chained
Equations

After these basic imputation methods, we ex-
plored more sophisticated methods. One such
method is Multiple Imputation by Chained
Equations (MICE) [1]. Single imputation in-
volves filling in a given piece of missing data
by referencing one other value. Multiple impu-
tation is more robust since it computes several
imputed values for each piece of missing data
and then consolidates these results with their
mean and variance. A key assumption used in
MICE is the Missing At Random (MAR) as-
sumption. This assumes that the missing data
depends only on the available information, not
on implicit features. This is not the same as the
Missing Completely At Random (MCAR) as-

sumption. MCAR is stricter than MAR because
it requires that the gaps in data are completely
random. MAR only requires that the missing
data be correlated to features present in the data
rather than latent features. It is not possible
to prove that MAR holds for a given dataset;
rather it is common to show that it is unlikely
that MAR does not hold [6].

Assuming that MAR holds for this dataset,
we used the python package fancyimpute to im-
pute our dataset using MICE. We tested impu-
tation by mean, median, and random values. As
one method of evaluation, we report the results
of using our imputed data to predict a given per-
son’s smoking habits using SVM and LR. The
results are summarized in Table 4.

Method Density SVM LR
Mean 0.5 0.8655 0.7524

0.7 0.8947 0.7310
0.9 0.7255 0.6794

Median 0.5 0.8791 0.6940
0.7 0.8850 0.7037
0.9 0.7234 0.6914

Random 0.5 0.8596 0.7173
0.7 0.8830 0.6238
0.9 0.7234 0.7154

Table 4: Prediction performance of Multiple
Imputation by Chained Equations (MICE) us-
ing SVM and LR. The Method column refers
to the reference method used to impute a given
missing value.

2.6. Collaborative Filtering

In addition to the methods mentioned above,
we also implemented the Collaborative Filter-
ing (CF) method for classifying our data [5].
CF is a popular recommendation algorithm that
bases its predictions for a given row on other
rows that are most similar to the one of inter-
est. In our implementation of CF we considered
two approaches in predicting our target vari-
able: we either predict the target value from the
data point with the single smallest distance or
use a k-nearest-neighbors (KNN) approach. In
the KNN approach, we predict the target value

4

Figure 2: LR vs SVM model performance

as the mode of the smoking values of the k clos-
est neighbors.

In the CF approach we use the training data
set as the set of the known data points, and
test the accuracy of our training method using
the test set. We investigated two different mea-
sures for determining the distance between two
points: the cosine distance and the Jaccard dis-
tance. The Jaccard distance is more robust for
cases with more missing data, so we were not
surprised to find that CF using the Jaccard In-
dex had higher accuracy rates than CF using the
Cosine Distance. Our results are summarized in
Table 5.

k Jaccard Accuracy Cosine Accuracy

1 0.6705 0.5048
17 0.7777 0.5730
21 0.7835 0.5730
31 0.8012 0.5672
33 0.7953 0.5730
37 0.7895 0.5458

Table 5: Accuracy of our Jaccard Index KNN
Collaborative Filtering Method on predicting a
given user’s smoking habits.

2.6.1 Cosine Distance

The cosine distance can be defined as:

dcos(u, v) = 1− u · v
|u||v|

where (·) is the inner product between two vec-
tors and |x| denotes the norm of vector x. In
our implementation, we only consider the ele-
ments of our vectors if the value at that index
is present in both vectors. We discard the in-
dices of missing values from the calculation of
the inner product and vector norms.

Note that if two states completely overlap,
we get dcos = 0 and if they are completely or-
thogonal we get dcos = 1 which makes dcos a
valid measure for the distance.

2.6.2 Jaccard Distance

The Jaccard index is a commonly used statis-
tical indicator for measuring the pairwise simi-
larity and can easily be extended for incomplete
data [3]. We define the Jaccard distance as fol-
lows:

dJaccard(u, v) = 1− |u ∩ v|
|u ∪ v|

(1)

where |u ∩ v| is the number of non-missing el-
ements that u and v have in common (the inter-
section), and |u ∪ v| is the total number of dis-
tinguishable elements that the data points share
at every index (the union). Similar to the co-
sine distance, dJaccard = 0 if the two data points
contain values for all the same features, and
dJaccard = 1 if they have no overlap.

5

2.7. Principal Component Analysis
(PCA)

PCA uses an orthogonal transformation to
convert a set of observations of possibly corre-
lated variables to a set of linearly independent
variables called the principal components. This
transformation is a common form of dimension-
ality reduction and is defined in such a way
that the first principal component accounts for
the largest proportion of variance in the dataset,
and each succeeding component in turn has the
highest variance possible under the constraint
that it is orthogonal to the preceding compo-
nents. Table 6 shows the explained variance of
our top 5 components.

In this work we use an off-the-shelf im-
plementation of PCA from the sklearn library
which implements linear dimensionality reduc-
tion using Singular Value Decomposition of the
data to project it to a lower dimensional space.

Component Explained Variance

1 3.52165322e+
2 1.51320352e+10
3 4.56051269e+09
4 3.37699782e+09
5 2.88801663e+08

Table 6: PCA: explained variance of top 5 com-
ponents

3. Training Methods

In order to achieve our goal of predicting
an individual’s smoking habits, we used two
common supervised learning methods: Support
Vector Machines (SVM) and Logistic Regres-
sion (LR). For both of these models we used
the sklearn implementations for training, and
sklearn’s GridSearchCV method for parameter
tuning. We used a standard 80/20 split to sep-
arate out test data, and then once test data was
removed, another 80/20 split to get training and
validation datasets. Thus, the test set is 20% of
the total dataset, the validation set is 16%, and
the training set is 64%.

3.1. Support Vector Machine (SVM)

Support Vector Machines, or SVMs are com-
monly used linear classfiers and tend to outper-
form naive perceptron-like classifiers. The key
idea in an SVM is to find a maximum margin
hyperplane for a set of datapoints in high di-
mensional space. This involves solving the fol-
lowing constrained optimization problem:

min
1

2
WTW + C

n∑
i=1

ζi

subject to the following constraints:

yi(W
Tφ(xi) + b) ≥ 1− ζi

SVMs provide a couple of advantages in
practice, including

• Being effective in high dimensional spaces

• Being generalizable to non-linearities via
the kernel trick

For our project, we used sklearn package for
performing SVM prediction.

3.2. Logistic Regression (LR)

Logistic regression - a bit of misnomer, is ac-
tually a model for linear classification instead.
The logistic function (et

1+et) used in this method
provides some nice properties to work with.

One indispensable property of logistic func-
tion is that it maps R ⇒ (0, 1). In doing so, it
maps all reals to finite bounded space of (0, 1)
after which the output may be interpreted and
treated as probabilities.

When formulated with an L2 regularization,
the cost function that we optimize that the
model optimizes for is the following:

1

2
WTW+C

∑
log(exp(−y(XTW+c))+1)

and the L1 regularized version, similarly
would be:

||W ||1 + C
∑

log(exp(−y(XTW + c)) + 1)

The above version uses the L1 norm for
thresholding the parameter space.

For our project, we used sklearn package for
performing logistic regression prediction.

6

4. Discussion
4.1. Analysis of Results

To begin, there are a few key observations to
note from our results:

1. SVM consistently outperforms LR.

2. Of the naive imputation approaches, Me-
dian and Mode Fill at 70% and 50% den-
sity all performed the best, and equally
well, each with an accuracy of .8889.

3. Of all the imputation methods, MICE with
Median Fill at 50% density performs the
best, with an accuracy of .8947.

4. For Collaborative Filtering, the implemen-
tation using Jaccard distance consistently
outperforms the one using cosine distance.

5. While most methods perform similarly at
70% and 50% density, they perform worse
at 90% density.

We saw a general trend that limiting our
dataset to rows with only 90% performed worse
than using a sparsity cutoff of 50% or 70%. This
is due to the drastically decreased size of our
dataset when we only use columns with 90% of
values present. The size of our dataset at differ-
ent sparsity cutoffs is shown in Table 7.

Density Rows Cols Total Vals

0.5 1,643 256 420,608
0.7 2,563 182 466,466
0.9 2,497 123 307,131

Table 7: Number of rows, columns, and total
values (after imputation) present in our dataset
at each sparsity cutoff.

We can see that, when limited to a 90% cut-
off, we only have around 2

3 as many data points
as we do when we use a 70% cutoff. Although
90% density gives us a denser dataset, if we are
using good imputation methods, it makes sense
that a cutoff which provides us with more data
points is more valuable for prediction methods.

We were pleased to see that our advanced
imputation methods (MICE in particular) out-
performed the naive imputation methods. As
well, our modification to Collaborative Filter-
ing by using the Jaccard distance outperformed
our Collaborative Filtering using the standard
cosine distance.

Regarding the fourth point, we expected the
Jaccard distance metric to perform better than
cosine distance on our dataset. Although we
adapted cosine distance to only factor in fea-
tures present in both vectors, Jaccard is bet-
ter designed to work with sparse datasets. It
is based on number of elements present rather
than the values themselves and thus accounts
for similarity between vectors with the same
features present.

4.2. Overfitting

As in any machine learning project, we must
assess how much our implementation is overfit-
ting to the training data.

In order to counteract overfitting, we applied
one of two types of regularization (L1 or L2)
when performing our predictions using SVM
and LR. We used a validation set to tune our
parameters, including selecting the best type of
regularization, and then performed our final as-
sessment on a test set. We found that L1 reg-
ularization, or LASSO, consistently performed
the best for both SVM and LR methods. This
makes sense given our sparse data, since an at-
tractive feature of L1 is that it not only performs
regularization by driving the weights down, but
it also performs feature selection by driving low
weights to zero. This is useful for our dataset
because many of the features will actually not
be useful for predicting a user’s smoking habits,
mostly due to the incredibly low density of
many of the columns. By not factoring in the
contributions of low weight features to our pre-
diction task, L1 regularization helps our meth-
ods to not overfit.

Regarding imputation, we are less likely to
overfit when we use multiple samples to impute
a given piece of missing data. For instance,
MICE imputes the same dataset several times
and then calculates the mean and variance for

7

stable predictions of the missing data. By ac-
counting for the uncertainty in imputations, this
method inherently protects against overfitting.
As well, KNN achieves a similar effect by using
k nearest neighbor rows to impute each missing
value, rather than only one other value.

In our Collaborative Filtering task, predic-
tion using a single row with the closest cosine
distance is prone to overfitting, so we would
prefer to use our KNN version of CF with a
larger value of k that performs well on a vali-
dation set for generalizability.

4.3. Future Work

One key assumption we used in this paper
was that data was Missing At Random (MAR).
Since it is not possible to directly prove that data
is missing at random, we chose to not include
the proof in our analysis, and rather cautiously
hold this assumption so that we could perform
our analysis. We are aware that there often are
other latent factors that contribute to the pat-
terns of missing data, but we determined it to
be outside the scope of our project.

As well, the paper we referenced when im-
plementing the Jaccard Index for Collaborative
Filtering included an outline of an algorithm
which handles sparse data well by iteratively
projecting the data space onto subspaces of a
”feasible region”. The algorithm guarantees
that the projections are close positive semidef-
inite approximations of the original sparse ma-
trix. The paper shows that successive projec-
tions onto the feasible region will result in an
improved estimate of the (unknown) true Jac-
card Index matrix. Although we did not have
time to implement this algorithm, we imagine
that it would yield better results than our Jac-
card Index implementation of CF, given that
Jaccard already outperformed the standard co-
sine distance version of CF.

5. Contributions
In this paper, we perform a review of cur-

rent state of the art imputation methods as used
for a prediction task. We demonstrate some
naive methods as a baseline performance and
then show performance on both packages that

implement more advanced methods as well as
our own implementation of a few varieties of
Collaborative Filtering. In general, the ad-
vanced methods outperformed the naive meth-
ods and we achieved a prediction accuracy rate
of 89.47%.

6. Division of Labor
Anna researched and implemented the naive

and advanced imputation methods and wrote
the Analysis section. Anna and Amir both
worked on data pre-processing and collabora-
tive filtering. Amir implemented collaborative
filtering. Amir and Ayush worked on PCA.
Ayush implemented the sklearn SVM and LR.
Each member wrote the portion of the paper
which they implemented.

References
[1] M. J. e. a. Azur. Multiple imputation by chained

equations: What is it and how does it work? In-
ternational journal of methods in psychiatric re-
search 20.1 (2011): 4049., ”2017”.

[2] CDC. National health and nutrition examination
survey. https://wwwn.cdc.gov/nchs/
nhanes/ContinuousNhanes/Default.
aspx?BeginYear=2015.

[3] W. Li. Estimating jaccard index with miss-
ing observations: A matrix calibration approach.
In C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems 28,
pages 2620–2628. Curran Associates, Inc., 2015.

[4] F. Pedregosa, G. Varoquaux, A. Gramfort,
V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[5] J. B. Schafer, D. Frankowski, J. Herlocker, and
S. Sen. Collaborative filtering recommender sys-
tems. In The adaptive web, pages 291–324.
Springer, 2007.

[6] Wikipedia. Imputation (statistics) —
Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/w/index.php?
title=Imputation%20(statistics)
&oldid=813636839, 2017. [Online;
accessed 11-December-2017].

8

https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.aspx?BeginYear=2015
https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.aspx?BeginYear=2015
https://wwwn.cdc.gov/nchs/nhanes/ContinuousNhanes/Default.aspx?BeginYear=2015
http://en.wikipedia.org/w/index.php?title=Imputation%20(statistics)&oldid=813636839
http://en.wikipedia.org/w/index.php?title=Imputation%20(statistics)&oldid=813636839
http://en.wikipedia.org/w/index.php?title=Imputation%20(statistics)&oldid=813636839
http://en.wikipedia.org/w/index.php?title=Imputation%20(statistics)&oldid=813636839

